Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Sci (Lond) ; 137(8): 633-643, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2305121

ABSTRACT

Hemp is an understudied source of pharmacologically active compounds and many unique plant secondary metabolites including more than 100 cannabinoids. After years of legal restriction, research on hemp has recently demonstrated antiviral activities in silico, in vitro, and in vivo for cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and several other cannabinoids against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), and γ-herpes viruses. Mechanisms of action include inhibition of viral cell entry, inhibition of viral proteases, and stimulation of cellular innate immune responses. The anti-inflammatory properties of cannabinoids are also under investigation for mitigating the cytokine storm of COVID-19 and controlling chronic inflammation in people living with HIV. Retrospective clinical studies support antiviral activities of CBD, Δ9-THC, and cannabinoid mixtures as do some prospective clinical trials, but appropriately designed clinical trials of safety and efficacy of antiviral cannabinoids are urgently needed.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabis , HIV Infections , Humans , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , HIV Infections/drug therapy
2.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-2235376

ABSTRACT

Cannabis is a plant notorious for its psychoactive effect, but when used correctly, it provides a plethora of medicinal benefits. With more than 400 active compounds that have therapeutic properties, cannabis has been accepted widely as a medical treatment and for recreational purposes in several countries. The compounds exhibit various clinical benefits, which include, but are not limited to, anticancer, antimicrobial, and antioxidant properties. Among the vast range of compounds, multiple research papers have shown that cannabinoids, such as cannabidiol and delta-9-tetrahydrocannabinol, have antiviral effects. Recently, scientists found that both compounds can reduce severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral infection by downregulating ACE2 transcript levels and by exerting anti-inflammatory properties. These compounds also act as the SARS-CoV-2 main protease inhibitors that block viral replication. Apart from cannabinoids, terpenes in cannabis plants have also been widely explored for their antiviral properties. With particular emphasis on four different viruses, SARS-CoV-2, human immunodeficiency virus, hepatitis C virus, and herpes simplex virus-1, this review discussed the role of cannabis compounds in combating viral infections and the potential of both cannabinoids and terpenes as novel antiviral therapeutics.


Subject(s)
COVID-19 , Cannabinoids , Cannabis , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Terpenes/pharmacology
3.
Int J Environ Res Public Health ; 19(22)2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2110097

ABSTRACT

In March 2020, the WHO announced the COVID-19 pandemic, which has been ongoing for over 2 years. To stop the spread of the virus, the governments of many countries decided to introduce reasonable social restrictions that were suitable for pandemic waves. This led to radical changes in people's lives, especially among students, who are very active in society. Before COVID-19, being of student age was associated with the highest frequency of stimulants use. It is important to note that drugs are taken disparately in various areas. Therefore, using the Computer-Assisted Web Interview type of study, the impact of the pandemic on the use of alcohol, cannabinoids, psychostimulants (e.g., amphetamine, methamphetamine, ecstasy) and sedatives (e.g., zolpidem, zopiclone, alprazolam, lorazepam, etc.) was assessed among students from European countries. The questionnaire included single- and multiple-answer questions. The first part concerned sociodemographic questions, while the second included questions about the use of stimulants in the last 3 months prior to participation in the study. Distribution of the survey covered the period from 31 January 2016 to 30 April 2021. A total of 17,594 European students participated in the study. The vast majority of participants were women (80.4%) and students of non-medical universities (77.2%) living in Eastern European countries (86.1%). Of all students, 15,613 (89.6%) reported alcohol drinking, 2538 (14.1%) the use of cannabinoids, 650 (3.6%) psychostimulants, and 2252 (12.5%) sedatives in the past three months. It has been shown that women are far less likely to use alcohol (OR 0.81), psychostimulants (OR 0.44) and cannabinoids (OR 0.49), while they are more likely to use sedatives (OR 1.41). During the COVID-19 pandemic, the consumption of alcohol (OR 0.55) and psychostimulants (OR 0.72) decreased and that of sleep medications increased (OR 1.17). To conclude, the COVID-19 pandemic influenced the pattern of stimulants used by students in European countries. The restriction of social interactions contributed to the decrease in the consumption of alcohol and psychostimulants but increased the use of sedatives and the frequency of their use. Women were found to use sedatives more often, while men preferred to drink alcohol and use cannabinoids or psychostimulants. It has also been shown that students of Central and Eastern Europe more often use alcohol and sedatives, while in Southern European countries psychostimulants and cannabinoids are preferred.


Subject(s)
COVID-19 , Cannabinoids , Humans , Female , Male , COVID-19/epidemiology , Pandemics , Hypnotics and Sedatives/therapeutic use , Cannabinoids/therapeutic use , Students
4.
Int J Mol Sci ; 23(8)2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1785749

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors. The complex anti-inflammatory and antiviral effects of cannabinoids have been confirmed by interactions with various signaling pathways. Considering the fact that the SARS-CoV-2 virus causes excessive immune response and triggers an inflammatory cascade, and that cannabinoids have the ability to regulate these processes, it can be assumed that they have potential to be used in the treatment of COVID-19. During the pandemic, there were many publications on the subject of COVID-19, which indicate the potential impact of cannabinoids not only on the course of the disease, but also their role in prevention. It is worth noting that the anti-inflammatory and antiviral potential are shown not only by well-known cannabinoids, such as cannabidiol (CBD), but also secondary cannabinoids, such as cannabigerolic acid (CBGA) and terpenes, emphasizing the role of all of the plant's compounds and the entourage effect. This article presents a narrative review of the current knowledge in this area available in the PubMed, Scopus and Web of Science medical databases.


Subject(s)
COVID-19 Drug Treatment , Cannabinoids , Cannabis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Pandemics , SARS-CoV-2
5.
Curr Top Med Chem ; 22(16): 1326-1345, 2022.
Article in English | MEDLINE | ID: covidwho-1779859

ABSTRACT

The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established. However, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease and indirect inflammatory/ autoimmune origin mechanisms. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potentially promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review, we addresses the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a reduction of viral replication, and a reduction of pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.


Subject(s)
COVID-19 Drug Treatment , Cannabinoids , Neuroprotective Agents , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pandemics , SARS-CoV-2
6.
Rev Bras Enferm ; 75Suppl 1(Suppl 1): e20201374, 2022.
Article in English, Portuguese | MEDLINE | ID: covidwho-1736573

ABSTRACT

OBJECTIVE: to identify and synthesize studies on the effects of cannabis use and its relation with SARS-CoV-2, as well as the therapeutic possibilities of using cannabinoids in the prevention and treatment of COVID-19. METHODS: scoping review, in the BVS, PubMed, SCIELO, CINAHL, SCOPUS, Web of Science, MedNar, CAPES and ProQuest databases, with no language restriction and year limitation. Narrative synthesis was performed. RESULTS: cannabis use causes changes in the respiratory and vascular system, it reduces the production of cytokines, which affects the users' immune system, increasing the susceptibility to infection and progression of COVID-19. However, studies have suggested the use of cannabinoids in the prophylaxis and treatment of COVID-19, due to their anti-inflammatory effect. CONCLUSIONS: the use of inhaled cannabis increases the progression and severity of the infection. On the other hand, the benefits of cannabinoids seem promising to modulate the immune system, but it needs further studies.


Subject(s)
COVID-19 Drug Treatment , Cannabinoids , Cannabis , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , SARS-CoV-2
7.
J Altern Complement Med ; 26(6): 444-448, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1637539

ABSTRACT

Editor's Note: For those whose response to COVID-19 includes exploring beyond vaccines, conventional pharmaceuticals, and the watchful or healthy waiting until such tools might arrive, interest in cannabinoids has been high - and controversial. It has already stimulated one journal, the Liebert Cannabis and Cannabinoid Research, to issue a call for papers on COVID-19. The unique place of cannabis in the culture seems to always mark the herb with an exponential asterisk whenever basketed with the other natural health strategies that are both widely used, and as broadly derided. In this invited commentary, JACM Editorial Board member Michelle Sexton, ND starts by describing the multiple immune modulating effects associated with the herb. The University of California San Diego Assistant Adjunct Professor in Anesthesiology then asks: "Given these effects, can phytocannabinoids be either helpful, or harmful for immune competency, in the context of the current COVID-19 pandemic?" A skilled edge-walker, Sexton lets the research fall where it may in wending a path through this evidentiary maze. -John Weeks, Editor-in-Chief, JACM.


Subject(s)
Betacoronavirus/drug effects , Cannabinoids/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus/drug effects , Immunocompetence/drug effects , Medical Marijuana/pharmacology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Immunocompromised Host , Male , Middle Aged , Pandemics , SARS-CoV-2
8.
Front Immunol ; 12: 631233, 2021.
Article in English | MEDLINE | ID: covidwho-1575223

ABSTRACT

Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Cannabinoids/therapeutic use , Cannabis/immunology , Cytokine Release Syndrome/therapy , Phytotherapy , SARS-CoV-2/physiology , Endocannabinoids/metabolism , Humans , Pandemics
10.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1495800

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19 Drug Treatment , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
11.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: covidwho-1106098

ABSTRACT

Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Cystic Fibrosis/drug therapy , Inflammation/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19/complications , COVID-19/metabolism , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Eicosanoids/metabolism , Humans , Inflammation/complications , Inflammation/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Roscovitine/pharmacology , Roscovitine/therapeutic use , Signal Transduction/drug effects , Thymalfasin/pharmacology , Thymalfasin/therapeutic use , COVID-19 Drug Treatment
12.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: covidwho-1067750

ABSTRACT

Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.


Subject(s)
Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Cannabinoids/chemistry , Cannabis/chemistry , Chemistry Techniques, Synthetic , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Communicable Diseases/virology , Humans , Immune System/drug effects , Immune System/immunology , Immune System/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Receptors, Cannabinoid/metabolism
13.
Int J Mol Sci ; 22(2)2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-1030147

ABSTRACT

Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson's disease, Tourette's syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.


Subject(s)
Cannabinoids/pharmacology , Cannabis/chemistry , Drug Discovery , Phytochemicals/pharmacology , Terpenes/pharmacology , Animals , Cannabinoids/chemistry , Cannabinoids/therapeutic use , Drug Synergism , Endocannabinoids/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Receptors, Cannabinoid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Terpenes/chemistry , Terpenes/therapeutic use , Tourette Syndrome/drug therapy , Tourette Syndrome/metabolism , COVID-19 Drug Treatment
14.
Eur Rev Med Pharmacol Sci ; 24(23): 12593-12608, 2020 12.
Article in English | MEDLINE | ID: covidwho-995021

ABSTRACT

The coronavirus disease 2019 (COVID-19) is declared as an international emergency in 2020. Its prevalence and fatality rate are rapidly increasing but the medication options are still limited for this perilous disease. The emergent outbreak of COVID-19 triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps propagating globally. The present scenario has emphasized the requirement for therapeutic opportunities to relive and overcome this latest pandemic. Despite the fact, the deteriorating developments of COVID-19, there is no drug certified to have considerable effects in the medical treatment for COVID-19 patients. The COVID-19 pandemic requests for the rapid testing of new treatment approaches. Based on the evidence, hydroxychloroquine is the first medicine opted for the treatment of disease. Umifenovir, remdesivir, and fevipiravir are deemed the most hopeful antiviral agent by improving the health of infected patients. The dexamethasone is a first known steroid medicine that can save the lives of seriously ill patients, and it is shown in a randomized clinical trial by the United Kingdom that it reduced the death rate in COVID-19 patients. The current review recapitulates the existing evidence of possible therapeutic drugs, peptides, humanized antibodies, convulsant plasma, and vaccination that has revealed potential in fighting COVID-19 infections. Many randomized and controlled clinical trials are taking place to further validate these agent's safety and effectiveness in curing COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines/therapeutic use , COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antiparasitic Agents/therapeutic use , COVID-19/prevention & control , Cannabinoids/therapeutic use , Chloroquine/therapeutic use , Complement Inactivating Agents/therapeutic use , Dexamethasone/therapeutic use , Drug Combinations , Enzyme Inhibitors/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Indoles/therapeutic use , Interferons/therapeutic use , Ivermectin/therapeutic use , Lopinavir/therapeutic use , Nitro Compounds , Pyrazines/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , Teicoplanin/therapeutic use , Tetracyclines/therapeutic use , Thiazoles/therapeutic use , COVID-19 Serotherapy
15.
mSphere ; 5(3)2020 05 13.
Article in English | MEDLINE | ID: covidwho-260573

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS coronavirus 2, or SARS-CoV-2) is the cause of the respiratory infection known as COVID-19. From an immunopathological standpoint, coronaviruses such as SARS-CoV-2 induce increased levels of a variety of T-helper 1 (Th1) and inflammatory cytokines and chemokines, including interleukin-1 (IL-1), IL-6, CCL2 protein, and CXCL10 protein. In the absence of proven antiviral agents or an effective vaccine, substances with immunomodulatory activity may be able to inhibit inflammatory and Th1 cytokines and/or yield an anti-inflammatory and/or Th2 immune response to counteract COVID-19 symptoms and severity. This report briefly describes the following four unconventional but commercially accessible immunomodulatory agents that can be employed in clinical trials to evaluate their effectiveness at alleviating disease symptoms and severity: low-dose oral interferon alpha, microdose DNA, low-dose thimerosal, and phytocannabinoids.


Subject(s)
Cannabinoids/therapeutic use , Coronavirus Infections/drug therapy , DNA/therapeutic use , Immunomodulation , Interferon-alpha/therapeutic use , Pneumonia, Viral/drug therapy , Thimerosal/therapeutic use , Betacoronavirus , COVID-19 , Cytokines/immunology , Humans , Pandemics , Phytochemicals/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL